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Abstract: This paper presents the investigation of the motion of infinitesimal body in the circular restricted
five-body problem in which four bodies are taken as heterogeneous oblate spheroid with different densities in
three layers and sources of radiation pressure. These four primaries are moving on the circumference of a
circle and form a kite configuration. After evaluating the equations of motion and Jacobi-integral, we study
the numerical part of the paper such as equilibria, zero-velocity curves and regions of motion. Finally, we
examine the stability of the equilibria and observed that all the equilibria are unstable.
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1 Introduction

The restricted problem is one of the attracting and interesting problem in the field of mechanics and
astronomy due to its applications. The history of restricted problem starts before four centuries with Euler
and Lagranges in 1772. The restricted problem studied in three-body, four-body and five-body by many
researchers with many perturbations as the different shapes of the primaries (oblate, triaxial, heterogeneous,
finite straight segments etc.), solar radiation pressure, albedo effect, yarkovsky effects, drags, resonances,
Coriolis and centrifugal forces, variable mass, etc. In the restricted three-body problem (R3BP), the
two bodies, known as primaries, are moving in circular orbits around their common center of mass and
third body, known as infinitesimal body, are moving in space under the influence of these primaries but not
influencing them. Many mathematicians have studied this problem with many perturbations as: Radzievskii
[15, 16], Chernikov [9], Bhatnagar and Hallan [8], Singh and Lake [21], Suraj et al. [22, 23], Abouelmagd
and Mostafa [2], Shalini et al. [19, 20], Ansari et al. [5], etc.

In the restricted four-body problem (R4BP), three-bodies are forming either Eulerian configuration or
Lagrangian configuration. And the fourth body is moving under the influence of these four primaries but
not affecting them. Many researchers have investigated this problem as: Kalvouridis et al. [10], Papadakis
[14], Abdullah et al. [1], Baltagianis [7], Kumari and Kushvah [11], Ansari et al.[3, 4], etc.
On the other hand, in the restricted five-body problem (R5BP), four primaries are moving in their mutual
gravitational forces and the fifth body is moving under the influence of them but not influencing them.
Many scientists have illustrated this problem as: Ollongren [13], Marchesin et al. [12], Shahbaz et al. [18],
Shoaib et al. [17], Zotos et al. [24], Ansari et al. [6].

This paper is organized as follows: In the second section, we have determined the equations of motion and
Jacobian integral. In the third section, we have done the numerical works. In the fourth section, we have
examined the stability of the equilibria. And finally, we have concluded the problem.

2 Description of the Problem and Equations of Motion

Here, we have considered the restricted five-body problem with circular kite configuration. In which four
bodies, taken as heterogeneous oblate spheroid with separate densities of three layers and also sources of
radiation, are placed at the circumference of the circle with radius R and also these four primaries are
forming circular kite (P1P2P3P4) which has two triangles. P1P2P3 is an equilateral triangle with side `,
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Figure 1: Heterogeneous oblate primaries in circular kite configuration.

while P1P3P4 is an isosceles triangle. The relation between ` and R is ` =
√

3R. The fifth body having
negligible mass as compare to the primaries and known as infinitesimal body, is moving in the space under
the influence of these four primaries but not influencing them. Let the principal axes of the heterogeneous
oblate spheroid remain parallel to the synodic axes Oxyz in the complete motion and revolving with angular
velocity −→ω = nk̂ about z-axis. Where the center of the circle is O which is also taken as origin and center
of mass of the primaries. Let m1, m2, m3, m4 and m be the masses of the primaries with m1 = m3

(in all aspects) and infinitesimal body and also let the coordinates of the vertices of kite P1, P2, P3, P4

and infinitesimal body P be (x1, 0, 0) = (R, 0, 0), (x2, y2, 0) = (−R2 ,−
√

3R
2 , 0), (x3, y3, 0) = (−R2 ,

√
3R
2 , 0),

(x4, y4, 0) = (R2 ,
√

3R
2 , 0) and (x, y, z) respectively.

The total force acting on the infinitesimal body is

−→
F = (1− α1)

−→
F1 + (1− α2)

−→
F2 + (1− α3)

−→
F3 + (1− α4)

−→
F4, (1)

i.e.,
−→
Fp and αp are the force and solar radiation pressure factor due to corresponding primaries (p = 1, 2,

3, 4).

If −→r = x
−→
i + y

−→
j + z

−→
k , is the position vector of the infinitesimal body then the equation of motion of

m in the vector form will be

m(
∂2−→r
∂t2

+ 2−→ω × ∂−→r
∂t

+
∂−→ω
∂t
×−→r +−→ω × (−→ω ×−→r )) =

−→
F . (2)

where first, second, third and fourth terms of the equation (2) are relative acceleration, Coriolis acceleration,
Euler’s acceleration and centrifugal acceleration respectively.

The gravitational potential of the heterogeneous oblate spheroid with three layers of densities ρq and axes
(aq, bq, cq), ρq < ρq+1, aq < aq+1, bq < bq+1, cq < cq+1 at any point is

V = −mass G
R1

− dG

2R3
1

− 3dGz2

2R5
1

. (3)

where, R1 = Distance between heterogeneous oblate body and the point at which potential is going to be
found and

d = 4π
3

∑3
q=1((ρq − ρq+1)aqbqcqσq), σq =

((aq)2−(cq)2)
5 , ρ4 = 0. (Ansari [5])

Hence, the total potential at point P due to m1, m2, m3 and m4 is

2



Journal of Nepal Mathematical Society (JNMS), Vol. 2, Issue 1 (2019); A. A. Ansari, P. Kumar, M. Alam

V =

4∑
p=1

(−mpG

rp
− dpG

2r3
p

− 3dpGz
2

2r5
p

), (4)

with,
r2
p = (x− xp)2 + (y − yp)2 + z2. (5)

To fix the units, the sum of the masses m1+ m2+ m3 + m4 = M = 1, the radius of the circle is considered
as unity i.e. R = 1, and unit of time is chosen in such a way that G = 1 and n = 1. Let µp =

mp

M , µ2 = µ

and µ4 = αµ, ⇒ µ1 = µ3 = 1−µ−αµ
2 .

Hence from equation (2), the dimensionless equations of motion in the cartesian form will be
ẍ− 2ẏ = ∂Ψ

∂x

ÿ + 2ẋ = ∂Ψ
∂y

z̈ = ∂Ψ
∂z

(6)

where, ∂Ψ
∂x ,

∂Ψ
∂y and ∂Ψ

∂z are the partial derivatives of Ψ w.r.to x, y and z respectively, and

Ψ =
1

2
(x2 + y2) +

4∑
p=1

βp(
µp
rp

+
dp
2r3
p

+
3dpz

2

2r5
p

),

βp = 1− αp, dp =
4π

3

3∑
q=1

((δpq − δ
p
q+1)(Apq)

2Cpqσ
p
q ),

Apq =
apq
R
,Cpq =

cpq
R
, σpq =

((apq)
2 − (cpq)

2)

5R2
.(p = 1, 2, 3, 4)

After multiplying one by one in the system (6) with ẋ, ẏ, ż respectively and adding, we get the Jacobi-
Integral as

v2 = 2Ψ− C. (7)

where v2 = ẋ2 + ẏ2 + ż2 is the velocity of the infinitesimal body and C is the Jacobi-Integral constant which
is conserved.

3 Analysis of the Problem

In this section, we have numerically investigated the equilibria, zero-velocity curves and regions of motion in
three planes (x-y, x-z and y-z planes) and shown the dynamical behaviour of the infinitesimal body. (In the
complete investigation, we have taken: µ = 0.3, α = 0.01, d1 = d3 = 9.83933× 10−18, d2 = 1.58302× 10−7,
d4 = 3.13153× 10−8, β1 = β2 = β3 = β4 = β.)(Ansari [5])

3.1 Evolution of equilibria

To evaluate the equilibrium points, we have to put right hand sides of system (6) equal to zero. i.e.,

∂Ψ

∂x
= 0, (8)

∂Ψ

∂y
= 0, (9)

∂Ψ

∂z
= 0. (10)

After solving these equations by Mathematica software, we got figure 2, figure 3 and figure 4 in x-y, x-z
and y-z plane respectively.
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3.1.1 Equilibria in x-y plane

In this plane, we have plotted the equilibrium points at four different values of β (0.5, 0.8, 0.9, 1). At
β = 0.5 and 0.8, we got four equilibrium points (L1, L2, L3, L4) in figures 2a and 2b respectively, while
β = 0.9 and 1, we got one extra i.e. five equilibrium points (L1, L2, L3, L4, L5) in figures 2c and 2e
respectively. Figures 2d and 2f are the zoomed figures of the figures 2c and 2e respectively. Red stars are
denoted as the locations of the photo-gravitational primaries (m1, m2, m3 and m4). From all the figures,
we observed that equilibrium points are near the primaries except one. i.e., L1 is near m1, L3 is near m3,
L4 is near m2, L5 is near m4 while L2 is near the origin. And also it is observed that as we increase the
value of β these equilibrium points start moving away.

Therefore, we can say that these shapes of the primaries as heterogeneous and radiation factor have great
impact as we know in the classical case of restricted three-body problem, researchers got five equilibrium
points where three are collinear and two are non-collinear.

3.1.2 Equilibria in x-z and y-z planes

Here, we got two equilibrium points (L1 and L2) in x-z plane (figure 3a) and one equilibrium point (L1)
in y-z plane (figure 4a) for the same four values of β. Figures 3b and 4b are the zoomed parts of figures 3a
and 4a near L1 respectively. In x-z plane, L2 is near the origin while L1 is right side of the origin and on
the x-axis. And in y-z plane, L1 is near the origin. From both the figures we observed that, as we increase
the values of β, the equilibrium points move away from the origin.

3.2 Zero-velocity curves

We have studied the zero-velocity curves of the infinitesimal body in three planes i.e., x-y, x-z and y-z
planes. To draw the zero-velocity curves, first of all, we have to compute the values of Jacobi-constant
C corresponding to each equilibrium points from equation (7). After computing the values of C, we have
drawn the zero-velocity curves for different values of the radiation factor β (Figure 5).

Figure 5a shows four zero-velocity curves corresponding to each Jacobian constants CL1
, CL2

, CL3
and CL4

for radiation factor β = 0.5. The curve due to CL1
(Black) covers L2, L4, m2 and m4 while L1 and L3

become limiting points. The curve due to CL2 (Blue) cover L2 only. The curve due to CL3 (Red) covers
all the primaries in the circular form. While the curve due to CL4 (Green) covers L2 and m4.

Figure 5b also shows four zero-velocity curves corresponding to CL1
, CL2

, CL3
and CL4

for radiation factor
β = 0.8. The curve due to CL1

, CL2
and CL3

shows the same phenomenon as figure 5a. But the curve due
to CL4 (Green) covers L2, L4, m2 and m4.

Figures 5c and 5d shows five zero-velocity curves corresponding to CL1
, CL2

, CL3
, CL4

and CL5
for radiation

factors β = 0.9 and 1 respectively. The curves due to corresponding Jacobian constants shows the same
phenomenon as the curves due to CL1

and CL3
cover all the primaries in circular form. The curve due to

CL2 (Blue) covers L2 only. The curve due to CL4 (Green) covers L2 L4, L5, m2 and m4. The curve due to
CL5 (Purple) covers L2, L5 and m4.

Again in x−z and y−z planes, we have shown the zero-velocity curves only at the value of radiation factor
β = 0.9. From figure 6a, the curve due to CL1

(Black) covers L1 and L2 but it is not bounded. The curve
due to CL2 covers only L2 and not bounded. Then from figure 6b, the curve due to CL1 covers L1 and not
bounded.

3.3 Regions of motion

In this part, we have plotted the regions of motion to study the dynamical behaviour of infinitesimal body
under the effect of four heterogeneous and source of radiation primaries in three planes (x-y (fig 7), x-z (fig
8 a, b) and y-z planes (fig 8c)). The color regions represent the prohibited regions which varies according
to the variation of the values of the Jacobian constants. The fifth body can move freely in the region other
than the colored region.
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Figure 2: Locations of equilibrium points in x-y-plane at different values of radiation factor β. a. at 0.5,
b. at 0.8, c. at 0.9, d. zoomed part of figure c near L5, e. at 1 and f. zoomed part of figure e near L5.
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Figure 3: a. Locations of equilibrium points in x-z-plane at different values of radiation factor β at 0.5
(Black), at 0.8 (Blue), at 0.9(Red), at 1(Green), b. Zoomed part of the figure a near L1.
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Figure 4: a. Locations of equilibrium points in y-z-plane at different values of radiation factor β at 0.5
(Black), at 0.8 (Blue), at 0.9(Red), at 1(Green), b. Zoomed part of the figure a near L1.
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Figure 5: Zero-velocity curves in x-y-plane at different values of the radiation factor β. a. 0.5, b. 0.8, c.
0.9, d. 1.

a.

L1L2

β = 0.9CL1 (Black)
CL2 (Blue),

-2 -1 0 1 2
-2

-1

0

1

2

x

z

b.

L1

CL1 (Black)

β = 0.9

-2 -1 0 1 2
-2

-1

0

1

2

y

z

Figure 6: Zero-velocity curves at the radiation factor β = 0.9. a. in x-z-plane and b. in y-z-plane.
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Figure 8: Regions of motion at the radiation factor β = 0.9. a, b. in x-z-plane and c. in y-z-plane at the
corresponding values of the Jacobian constant.
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4 Stability of Equilibria

In this section, we have examined the stability of equilibria in the motion. The stability of motion means
bounded displacements and velocities which are bounded functions of time in the neighbourhood of the
equilibrium points. Let the coordinates of any one of the equilibrium points be denoted by (x0, y0, z0)
and (x1

0, y
1
0 , z

1
0) denote small displacements of the infinitesimal particle from the equilibrium points. i.e.,

x = x0 + x1
0, y = y0 + y1

0 , z = z0 + z1
0 .

We assume that the displacements are sufficiently very small that the Taylor expansions of ψx, ψy, ψz, in
the region surrounding the equilibrium points can be written as

ψx = x1
0(ψxx)0 + y1

0(ψxy)0 + z1
0(ψxz)

0,

ψy = x1
0(ψyx)0 + y1

0(ψyy)0 + z1
0(ψyz)

0,

ψz = x1
0(ψzx)0 + y1

0(ψzy)0 + z1
0(ψzz)

0,

(11)

where the partial derivatives are evaluated at the point (x0, y0, z0).
Therefore, the system (6) can be written as,

ẍ1
0 − 2ẏ1

0 = x1
0(ψxx)0 + y1

0(ψxy)0 + z1
0(ψxz)

0,

ÿ1
0 + 2ẋ1

0 = x1
0(ψyx)0 + y1

0(ψyy)0 + z1
0(ψyz)

0,

z̈1
0 = x1

0(ψzx)0 + y1
0(ψzy)0 + z1

0(ψzz)
0.

(12)

To solve the above equations, let

x1
0 = Aeλt, y1

0 = Beλt, z1
0 = Ceλt, (13)

where A, B, C and λ are parameters. Substituting equation (13) in equation (12), and the rearrangement
yield 

A(λ2 − (ψxx)0) +B(−2λ− (ψxy)0)− C(ψxz)
0 = 0,

A(2λ− (ψyx)0) +B(λ2 − (ψyy)0)− C(ψyz)
0 = 0,

−A(ψzx)0 −B(ψzy)0 + C(λ2 − (ψzz)
0) = 0.

(14)

This will have a non-trivial solution for A, B and C, if

∣∣∣∣∣∣
(λ2 − (ψxx)0) (−2λ− (ψxy)0) −(ψxz)

0

(2λ− (ψyx)0) (λ2 − (ψyy)0) −(ψyz)
0

−(ψzx)0 −(ψzy)0 (λ2 − (ψzz)
0)

∣∣∣∣∣∣ = 0,

i.e.,
λ6 + a1λ

4 + a2λ
2 + a3 = 0 (15)

where,

a1 = 4− (ψxx)0 − (ψyy)0 − (ψzz)
0,

a2 = −(ψ2
xy)0 − (ψ2

xz)
0 − (ψ2

yz)
0 − 4(ψ2

zz)
0 + (ψxx)0(ψyy)0 + (ψxx)0(ψzz)

0 + (ψyy)0(ψzz)
0,

a3 = (ψ2
xz)

0(ψyy)0 − 2(ψxy)0(ψxz)
0(ψyz)

0 + (ψxx)0(ψ2
yz)

0 + (ψ2
xy)0(ψzz)

0 − (ψxx)0(ψyy)0(ψzz)
0.

Equation (15) is the characteristic polynomial and we have numerically found the six values of characteristic
roots given in tables. In these values at least one is positive root or having positive real part of complex
roots (Dark black in the tables). Hence, all the equilibrium points are unstable in all the planes.
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Radiation factor β Equilibria Corresponding Characteristic Roots
0.5 1.364, 0.01 2.35721332, - 1.90974176 i, 1.90974176 i, - 2.35721332,

- 1.97720535 i, 1.97720535 i
-0.0109, -0.0185 - 0.49941429 - 0.99999692 i, - 0.49941429 + 0.99999692 i,

0.49941429 + 0.99999692 i, 0.49941429 - 0.99999692 i,
- 0.70628673 i, 0.70628673 i.

-0.67, 1.182 -2.42607259, - 1.95211201 i, 1.95211201 i, - 2.01868444 i,
2.01868444 i, 2.42607259.

-0.67, -1.1582 -2.47287855, - 1.98117884 i, 1.98117884 i, - 2.04693700 i,
2.04693700 i, 2.47287855.

0.8 1.454, 0.001 -2.07603417, - 1.74172796 i, 1.74172796 i, - 1.81005567 i,
1.81005567 i, 2.07603417.

-0.0109, -0.0195 - 0.63168818 - 0.99998827 i, - 0.63168818 + 0.99998827 i,
0.63168818 + 0.99998827 i, 0.63168818 - 0.99998827 i,

- 0.89336770 i, 0.89336770 i.
-0.72, 1.267 - 2.04385981, - 1.72284988 i, 1.72284988 i, - 1.79141038 i,

1.79141038 i, 2.04385981.
-0.72, -1.242 - 2.04040081, - 1.72107142 i, 1.72107142 i, - 1.78916186 i,

1.78916186 i, 2.04040081.
0.9 1.454, 0.001 - 2.25221769, - 1.84738147 i, 1.84738147 i, - 1.91302538 i,

1.91302538 i, 2.25221769.
-0.0109, -0.0195 - 0.67000480 - 0.99998566 i, - 0.67000480 + 0.99998566 i,

0.67000480 + 0.99998566 i, 0.67000480 - 0.99998566 i,
- 0.94755953 i, 0.94755953 i.

-0.732, 1.28367 - 2.02696867, - 1.71332677 i, 1.71332677 i, - 1.78132347 i,
1.78132347 i, 2.02696867.

-0.712, -1.2682 - 2.02753039, - 1.71398738 i, 1.71398738 i, - 1.78131488 i,
1.78131488 i, 2.02753039.

0.51, 0.91 - 7.62240806, - 5.41881682 i, 5.41881682 i, - 5.46177308 i,
5.46177308 i, 7.62240806.

1.0 1.514, 0.001 - 1.86697631, - 1.62146153 i, 1.62146153 i, - 1.69010738 i,
1.69010738 i, 1.86697631.

-0.0109, -0.0195 - 0.70624540 - 0.99998289 i, - 0.70624540 + 0.99998289 i,
0.70624540 - 0.99998289 i, 0.70624540 + 0.99998289 i,

- 0.99881545 i, 0.99881545 i.
-0.732, 1.29367 - 2.10256574, - 1.75820925 i, 1.75820925 i, - 1.82468704 i,

1.82468704 i, 2.10256574.
-0.732, -1.2682 - 2.09086345, - 1.75158070 i, 1.75158070 i, - 1.81758933 i,

1.81758933 i, 2.09086345.
0.51, 0.91 - 7.62240806, - 5.41881682 i, 5.41881682 i, - 5.46177308 i,

5.46177308 i, 7.62240806.

Table 1: Corresponding characteristic roots of equilibria for the different values of radiation factor β in
x-y-plane.
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Radiation factor β Equilibria Corresponding Characteristic Roots
0.5 1.367, 0 - 2.32112664, - 1.88762721 i, 1.88762721 i, - 1.95563093 i,

1.95563093 i, 2.32112664.
-0.0109, 0 - 0.49967858 - 0.99991052 i, - 0.49967858 + 0.99991052 i,

0.49967858 - 0.99991052 i, 0.49967858 + 0.99991052 i,
- 0.70690500 i, 0.70690500 i.

0.8 1.455, 0 - 2.06645094, - 1.73607684 i, 1.73607684 i, - 1.80451007 i,
1.80451007 i, 2.06645094.

-0.0109, 0 - 0.63195182 - 0.99979542 i, - 0.63195182 + 0.99979542 i,
0.63195182 - 0.99979542 i, 0.63195182 + 0.99979542 i,

- 0.89417196 i, 0.89417196 i.
0.9 1.48, 0 -2.00679402, - 1.70150904 i, 1.70150904 i, - 1.76977093 i,

1.76977093 i, 2.00679402.
-0.0109, 0 - 0.67025651 - 0.99974999 i, -0.67025651 + 0.99974999 i,

0.67025651 - 0.99974999 i, 0.67025651 + 0.99974999 i,
- 0.94841258 i, 0.94841258 i.

1 1.503, 0 - 1.95867320, - 1.67394958 i, 1.67394958 i, - 1.74192233 i,
1.74192233 i, 1.95867320.

-0.0109, 0 - 0.70648325 - 0.99970161 i, -0.70648325 + 0.99970161 i,
0.70648325 - 0.99970161 i, 0.70648325 + 0.99970161 i,

- 0.99971464 i, 0.99971464 i.

Table 2: Corresponding characteristic roots of equilibria for the different values of radiation factor β in
x-z-plane.

Radiation factor β Equilibria Corresponding Characteristic Roots
0.5 -0.0181, 0 - 0.49950884 - 0.99996864 i, - 0.49950884 + 0.99996864 i,

0.49950884 - 0.99996864 i, 0.49950884 + 0.99996864 i,
- 0.70650051 i, 0.70650051 i.

0.8 -0.0259, 0 - 0.63158756 - 0.99985445 i, - 0.63158756 + 0.99985445 i,
0.63158756 - 0.99985445 i, 0.63158756 + 0.99985445 i,

- 0.89352495 i, 0.89352495 i.
0.9 -0.0283, 0 - 0.66978891 - 0.99977103 i, - 0.66978891 + 0.99977103 i,

0.66978891 - 0.99977103 i, 0.66978891 + 0.99977103 i,
- 0.94770723 i, 0.94770723 i.

1 -0.0304, 0 - 0.70589676 - 0.99966260 i, - 0.70589676 + 0.99966260 i,
0.70589676 - 0.99966260 i, 0.70589676 + 0.99966260 i,

- 0.99896375 i, 0.99896375 i.

Table 3: Corresponding characteristic roots of equilibria for the different values of radiation factor β in
y-z-plane.
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5 Conclusion

In this study, we have performed the behavior of the motion of infinitesimal body in the restricted five-body
problem under the assumption that the four primaries are heterogeneous in shapes and sources of radiation
pressure. After evaluating the equations of motion, we numerically execute the equilibria, zero-velocity
curves and regions of motion in three planes i.e. x-y, x-z and y-z planes, for different values of radiation
factor β. In the x-y plane, at β = 0.5 and 0.8, we got four equilibria but at 0.9 and 1, we got five equilibria.
In the x-z plane, we got two equilibria at β = 0.9. And in the y-z plane, we got only one equilibrium point at
β = 0.9. As far as zero-velocity and regions of motion are concerned, we have plotted these in three planes
and explained in detail in the concerning sections. On the other hand, for stability, we have examined it
numerically and found that all the equilibria are unstable.
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